Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Hoàng

\(\sqrt{\left(x-2\right)\left(x+3\right)}=5\)

\(\sqrt{\left(2x+3\right)^2}=x-5\)

\(\sqrt{x^2-6x+9}=x+7\)

\(\sqrt{2x-3}=x-1\)

a: ĐKXĐ: \(\left[{}\begin{matrix}x>=2\\x< =-3\end{matrix}\right.\)

\(\sqrt{\left(x-2\right)\left(x+3\right)}=5\)

=>\(\sqrt{x^2+x-6}=5\)

=>\(x^2+x-6=25\)

=>\(x^2+x-31=0\)

=>\(\left[{}\begin{matrix}x=\dfrac{-1+5\sqrt{5}}{2}\left(nhận\right)\\x=\dfrac{-1-5\sqrt{5}}{2}\left(nhận\right)\end{matrix}\right.\)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{\left(2x+3\right)^2}=x-5\)

=>\(\left|2x+3\right|=x-5\)

=>\(\left\{{}\begin{matrix}x>=5\\\left(2x+3\right)^2=\left(x-5\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=5\\\left(2x+3-x+5\right)\left(2x+3+x-5\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=5\\\left(x+8\right)\left(3x-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=5\\\left[{}\begin{matrix}x=-8\left(loại\right)\\x=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

=>\(x\in\varnothing\)

c: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2-6x+9}=x+7\)

=>\(\sqrt{\left(x-3\right)^2}=x+7\)

=>\(\left|x-3\right|=x+7\)

=>\(\left\{{}\begin{matrix}x+7>=0\\\left(x-3\right)^2=\left(x+7\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-7\\\left(x-3-x-7\right)\left(x-3+x+7\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-7\\-10\left(2x+4\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-7\\x+2=0\end{matrix}\right.\)

=>x=-2

d: ĐKXĐ: x>=3/2

\(\sqrt{2x-3}=x-1\)

=>\(\left\{{}\begin{matrix}2x-3=\left(x-1\right)^2\\x>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x+1=2x-3\\x>=\dfrac{3}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-4x+4=0\\x>=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x>=\dfrac{3}{2}\end{matrix}\right.\)

=>x=2


Các câu hỏi tương tự
2012 SANG
Xem chi tiết
Quỳnh Anh Lưu
Xem chi tiết
Thu Trần Thị
Xem chi tiết
Chau Pham
Xem chi tiết
Nguyễn Minh quyết
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
Hoàng Phú Lợi
Xem chi tiết
Xem chi tiết
nguyễn hà quyên
Xem chi tiết