Ta có : \(\left(1\dfrac{2}{3}\right)\left(1\dfrac{2}{5}\right).....\left(1\dfrac{2}{2011}\right)\left(1\dfrac{2}{2013}\right)\)
\(=\dfrac{5}{3}.\dfrac{7}{5}....\dfrac{2013}{2011}.\dfrac{2015}{2013}=\dfrac{2015}{3}\)
\(\left(1\dfrac{2}{3}\right)\left(1\dfrac{2}{5}\right)\left(1\dfrac{2}{7}\right)...\left(1\dfrac{2}{2011}\right)\left(1\dfrac{2}{2013}\right)\)
\(=\dfrac{5}{3}.\dfrac{7}{5}.\dfrac{9}{7}.....\dfrac{2013}{2011}.\dfrac{2015}{2013}\)
\(=\dfrac{2015}{3}\)
\(\left(1\dfrac{2}{3}\right)\left(1\dfrac{2}{5}\right)\left(1\dfrac{2}{7}\right)...\left(1\dfrac{2}{2013}\right)\)
\(=\dfrac{5}{3}.\dfrac{7}{5}.\dfrac{9}{7}...\dfrac{2015}{2013}=\dfrac{2015}{3}\)
\(\left(1\dfrac{2}{3}\right).\left(1\dfrac{2}{5}\right).\left(1\dfrac{2}{7}\right).....\left(1\dfrac{2}{2011}\right).\left(1\dfrac{2}{2013}\right)\)
\(=\dfrac{5}{3}.\dfrac{7}{5}.\dfrac{9}{7}.....\dfrac{2013}{2011}.\dfrac{2015}{2013}\)
\(=\dfrac{5.7.9.....2013.2015}{3.5.7.....2011.2013}\)
\(=\dfrac{2015}{3}\)