\(\sqrt{2x^2+4x+5}=\sqrt{2\left(x^2+2x+1\right)+3}=\sqrt{2\left(x+1\right)^2+3}\)
Do \(2\left(x+1\right)^2+3\ge3>0\forall x\) nên điều kiện xác định của x là: \(x\in R\)
\(\sqrt{2x^2+4x+5}=\sqrt{2\left(x^2+2x+1\right)+3}=\sqrt{2\left(x+1\right)^2+3}\)
\(ĐKXĐ:2x^2+4x+5\ge0\Leftrightarrow2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3\ge3>0\)(luôn đúng)
Vậy ĐKXĐ là \(x\in R\) hay pt luôn xác định với mọi x