a: Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
\(\widehat{AIB}=\widehat{CID}\)
Do đó: ΔIAB\(\sim\)ΔICD
Suy ra: IA/IC=IB/ID
hay \(IA\cdot ID=IC\cdot IB\)
b: Điểm O ở đâu vậy bạn?
a: Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
\(\widehat{AIB}=\widehat{CID}\)
Do đó: ΔIAB\(\sim\)ΔICD
Suy ra: IA/IC=IB/ID
hay \(IA\cdot ID=IC\cdot IB\)
b: Điểm O ở đâu vậy bạn?
i là giao điểm 2 đường chéo của hình thang ABCD (AB//CD)
a,chứng minh:IA.ID=IB.IC
b,kẻ OH vuông góc AB tại H,vuông góc với CD tại K
chứng minh:IH/IK=AB/CD
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O vuông góc với AB và CD lần lượt tại H và K. Chứng minh OH/OK = AB/CD
Cho hình thang ABCD ( AB // CD và AB < CD) Gọi I,K,E lần lượt là trung điểm của BD,AC,BC.
a) Chứng minh IE // AB và ba điểm I,K,E thẳng hàng
b) Kẻ AP vuông góc với CD tại P, BQ vuông góc với CD tại Q. Chứng minh IK = (DP +CQ) : 2
Cho hình thang ABCD (AB//CD). Hai đường chéo AC và BD cắt nhau tại O. Tia phân giác của góc DOC cắt DC tại H. Qua H kẻ HM//AC (M thuộc AD và HN//BD (N thuộc BC). Gọi I là giao điểm của HM và BD, K là giao điểm của HN và AC. Chứng minh :
a)OH vuông với IK
b)Tú giác IKNM là hình thang cân
c)Kẻ ML//DB(L thuộc AB). Để tứ giác MLNH là hình vuông thì hình thang ABCD cần phải có điều điện gì
Mai nộp rồi help!!!!!!!
Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của hai đường chéo AC và BD.
a) Chứng minh rằng OA.OD = OB.OC
b) Đường thẳng qua O vuông góc với AB và CD theo thứ tự tại H và K.
Chứng minh rằng O H O K = A B C D
Cho hình thang ABCD(AB//CD). Hai đường chéo AC và BD cắt nhau tại I.
a/ Chứng minh : ΔIBA đồng dạng với ΔIDC.
b/ Chúng minh IA.ID=IB.IC
c/ Qua I kẻ HK vuông góc với AB và DC(H AB, K DC). Chứng minh
AB/DC=IH/IK
Cho hình thanh ABCD (AB//CD; AB<CD). Gọi I,K,M là trung điểm của AB,BD,AC và E là giao điểm của IK và CD. Đường vuông góc kẻ từ K tới AC cắt đường vuông góc kẻ từ M tới BD tại Q. CMR QD=QC
Help me!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho hình thang cân ABCD (AB song song CD), (AB<CD).Từ A kẻ AH vuông góc với AB cắt AB tại H. Từ B kẻ BK vuông góc với AB cắt AC tại K.
a) Tứ giác AHKB là hình gì? Vì sao?
b) Gọi E là trung điểm của Ab, F là trung điểm của DC, I và G theo thứ tự là giao điểm của AC với BD và CH với DK. Chứng minh rằng bốn điểm E, I, G, H thẳng hàng.
Cho hình thang ABCD (AB // CD). Gọi giao điểm hai đường chéo AC, BD là O. Biết OA = 4cm, OC = 8cm, AB = 5cm.
a) Tính DC. Chứng minh OA.OD=OC.OB
b) Qua O kẻ đường thẳng HK vuông góc AB (H thuộc AB; K thuộc CD). Tính OH/OK
c) Qua O kẻ đường thẳng song song với hai đáy, cắt AD, BC lần lượt tại E, F.
Chứng minh rằng AE/AD+CF/BC=1