Bài 3:
a: \(\sqrt{3x-5}=7\)
\(\Leftrightarrow3x-5=49\)
\(\Leftrightarrow3x=54\)
hay x=18
Bài 3:
b. \(\sqrt{100-200x}-\dfrac{3}{4}\sqrt{16-32x}+2\sqrt{1-2x}=18\)
<=> \(\sqrt{100\left(1-2x\right)}-\dfrac{3}{4}\sqrt{16\left(1-2x\right)}+2\sqrt{1-2x}=18\)
<=> \(10\sqrt{1-2x}-3\sqrt{1-2x}+2\sqrt{1-2x}=18\)
<=> \(\left(10-3+2\right)\sqrt{1-2x}=18\)
<=> \(11\sqrt{1-2x}=18\)
<=> \(\sqrt{1-2x}=\dfrac{18}{11}\)
<=> 1 - 2x = \(\left(\dfrac{18}{11}\right)^2\)
<=> 1 - 2x = \(\dfrac{324}{121}\)
<=> \(1-\dfrac{324}{121}=2x\)
<=> \(2x=\dfrac{-203}{121}\)
<=> \(x=\dfrac{-203}{242}\)
Bài 4:
Áp dụng hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH$
$3^2=y.5\Rightarrow y=\frac{9}{5}=1,8$
Áp dụng định lý Pitago:
$x=\sqrt{3^2+y^2}=\sqrt{9+1,8^2}=\frac{3\sqrt{34}}{5}$
$\tan \alpha = \frac{BH}{AH}=\frac{y}{3}=\frac{1,8}{3}=\frac{3}{5}$
$\Rightarrow \alpha \approx 31^0$
b.
$AH\perp BC, CD\perp BC$ nên $AH\parallel CD$
Áp dụng định lý Talet:
$\frac{AH}{CD}=\frac{BH}{BC}$
$\Rightarrow DC=\frac{AH.BC}{BH}=\frac{3(y+5)}{y}=\frac{3(1,8+5)}{1,8}=\frac{34}{3}$
$\tan \widehat{HDC}=\frac{HC}{CD}=\frac{5}{\frac{34}{3}}=\frac{15}{34}$
$\Rightarrow \widehat{HDC}=23,8^0$
$\widehat{AHD}=\widehat{HDC}=23,8^0$ (hai góc so le trong)