a) \(A=x^2+2x+12\)
\(A=x^2+2x+1+11\)
\(A=\left(x+1\right)^2+11\)
Có: \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+11\ge11\)
Dấu bằng xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy: \(Min_A=11\) tại \(x=-1\)
a) \(A=x^2+2x+12\)
\(A=x^2+2x+1+11\)
\(A=\left(x+1\right)^2+11\)
Có: \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+11\ge11\)
Dấu bằng xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy: \(Min_A=11\) tại \(x=-1\)
Tìm GTNN của biểu thức:a=x2+2y2++2xy+2x-4y+2018
Tìm GTNN của biểu thức:
a) \(A=2x^2+2xy+y^2-2x+2y+2\)
b) \(B=-x^2+2xy-4y^2+2x+10y+5\)
c) \(C=-x^2-2y^2-2xy+2x-2y-15\)
Tìm GTNN của các biểu thức :
a, P=2x^2+y^2-2xy-2x+2015
b, Q= x^2=2y^2-x+3y với x-2y=2
c, B=3x^2+y^2-8x+2xy+16
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
\(A=x^2+2x+2xy+2y^2+4y+2021\)
Tính GTNN của biểu thức A
tìm gtnn của biểu thức : A= x^2 -2xy +2y^2 +2x -10y +2033
tìm GTNN của biểu thức
A=x^2+2y^2+2xy+2x-4y+2016