cho:\(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\)
CMR: \(A=\Sigma\dfrac{1}{5a^2+ab+bc}\ge\dfrac{3}{7}\)
Cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+b^2+c^2=1\end{matrix}\right.\)
CMR: \(\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{b^2+a^2}\ge\dfrac{3\sqrt{3}}{2}\)
giải các hpt sau: a)\(\left\{{}\begin{matrix}4\sqrt{5}-y=3\sqrt{2}\\10x+\sqrt{2}y=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{3x}{4}+\dfrac{2y}{5}=2,3\\x-\dfrac{3y}{5}=0,8\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left|x-1\right|-\dfrac{3}{\sqrt{y-2}}=-1\\2\left|1-x\right|+\dfrac{1}{\sqrt{y-2}}=5\end{matrix}\right.\)cíu zới
a.\(\sqrt{28a^4}\)
b. A=\(\left(\dfrac{\sqrt{21}-\sqrt{7}}{\sqrt{3-1}}+\dfrac{\sqrt{10}-\sqrt{5}}{\sqrt{2}-1}\right)\)\(\div\)\(\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
c.\(\left\{{}\begin{matrix}\dfrac{3}{2x}-y=6\\\dfrac{1}{x}+2y=-4\end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp thế:
a)\(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\)
Cho các số thực a,b,c thỏa mãn a+b+c=0,a2+b2\(\ne\)c2,b2+c2\(\ne\)a2,c2+a2\(\ne\)b2.Tính giá trị biểu thức P=\(\dfrac{a^2}{a^2-b^2-c^2}\)+\(\dfrac{b^2}{b^2-c^2-a^2}\)+\(\dfrac{c^2}{c^2-a^2-b^2}\)
Giải hpt
a)\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y+12}-\dfrac{x}{y}=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}+\dfrac{xy}{x+y}=\dfrac{5}{2}\\\dfrac{x-y}{xy}+\dfrac{xy}{x-y}=\dfrac{10}{3}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\\\dfrac{2y}{x-1}-\dfrac{5x}{y-1}=2\end{matrix}\right.\)
Giải phương trình, hệ phương trình khó (các câu cuối của đề thi lớp 10).
a) \(2\sqrt{x+3}+2x^2=\dfrac{10}{4x-2}+1\)
b) \(\left\{{}\begin{matrix}x^2+y^2=9\\\dfrac{1-x^2}{\left(1+xy\right)^2-\left(x+y\right)^2}-y^2=1\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{x^2}{8}+\dfrac{y^2}{2}=1\\\sqrt{x+2y}=\dfrac{x}{y}\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)