a.
Ta có: \(CM=BC-BM=\dfrac{a}{2}\) ; \(CN=DC-DN=\dfrac{a}{4}\)
\(AM=\sqrt{AB^2+BM^2}=\dfrac{a\sqrt{5}}{2}\)
\(MN=\sqrt{CM^2+CN^2}=\dfrac{a\sqrt{5}}{4}\)
\(AN=\sqrt{AD^2+DN^2}=\dfrac{5a}{4}\)
\(\Rightarrow AM^2+MN^2=\dfrac{25a^2}{16}=AN^2\Rightarrow\Delta AMN\) vuông tại M
\(\Rightarrow MN\perp AM\)
Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp MN\)
\(\Rightarrow MN\perp\left(SAM\right)\Rightarrow\left(AMN\right)\perp\left(SAM\right)\) (do \(MN\in\left(SMN\right)\))
b.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{2}\Rightarrow\widehat{SDA}\approx54^044'\)
c.
\(V=\dfrac{1}{3}.SA.AB^2=\dfrac{a^3\sqrt{2}}{3}\)