a) \(\left(x+y\right)^2\) + \(\left(x-y\right)^2\) - \(2x^2\)
= \(x^2\) +2xy + \(y^2\) + \(x^2\) -2xy + \(y^2\) - \(2x^2\)
= 2\(y^2\)
Vậy giá trị của biểu thức ko phụ thuộc vào biến x
b) \(\left(x^2+4\right)\) (x+2) (x-2) - \(\left(x^2+3\right)\left(x^2-3\right)\)
= \(\left(x^2+4\right)\) \(\left(x^2-4\right)\) - \(\left(x^4-3x^2+3x^2-9\right)\)
= \(x^4-4x^2+4x^2-16-x^4+3x^2-3x^2+9\)
= -7
Vậy giá trị của biểu thức k phụ thuộc vào biến x
c: \(=27x^3-8-27x^3+6=-2\)
b: \(=\left(3x+5\right)^2-2\left(3x+5\right)\left(3x-2\right)+\left(3x-2\right)^2\)
\(=\left(3x+5-3x+2\right)^2=7^2=49\)