a, Ta có \(\widehat{ACD}=90^0\) (góc nt chắn nửa đg tròn) nên CD⊥AC
Do đó CD//BE
Ta có \(\widehat{ABD}=90^0\) (góc nt chắn nửa đg tròn) nên BD⊥AB
Do đó BD//CF
Vậy BHCD là hbh
a, Ta có \(\widehat{ACD}=90^0\) (góc nt chắn nửa đg tròn) nên CD⊥AC
Do đó CD//BE
Ta có \(\widehat{ABD}=90^0\) (góc nt chắn nửa đg tròn) nên BD⊥AB
Do đó BD//CF
Vậy BHCD là hbh
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường kính AD. Gọi H là giao điểm của 2 đường cao BE,CF của tM giác ABC
a) CM: tứ giác BHCD là hình Bình hành
b) Gọi I là trung điểm BC. CM: AH= 2 OI
c) Gọi G là trọng tâm của Tam giác ABC. CM: G là trọng tâm tam giác AHD.
Cho tam giác ABC nội tiếp đường tròn (o) đường kính AD .Gọi H là giao điểm của 2 đường cao BE và CF của tam giác ABC
a/ tứ giác BHCD là hình bình hành
b/Gọi I là trung điểm của BC chứng minh AH=2OI
c/Gọi G là trọng tâm của tam giác ABC .Chứng minh G cũng là trọng tâm của tam giác AHD
Giúp mình câu cuối thôi nha !
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường kính AD. Gọi H là giao điểm hai đường cao BE, CF của tam giác ABC.
a.Chứng minh 4 điểm A,E,H,F thuộc một đường tròn.
b.Chứng minh tứ giác BHCD là hình bình hành.
c.Gọi I là trung điểm của BC. Chứng minh AH = 2.OI
d.Gọi G là trọng tâm tam giác ABC. Chứng minh 3 điểm H, G, O thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), đường kính AD, H là trực tâm tam giác ABC, M là trung điểm BC, G là trọng tâm tam giác ABC
a, CMR AB vuông góc với BD, tứ giác BHCD là hình bình hành
b, CNR H,G,O thẳng hàng
c, TÌm GTLN của AH+BC theo R
cho tam giác ABC nhọn ( AB<AC) nội tiếp (O), hai đường cao BE , CF cát nhau tại H . tia AO cắt đường tròn (O) tại D. a, chứng minh tứ giác BCEF nội tiếp b, chunwgs minh tứ giác BHCD là hình bình hành c, gọi M là trung điểm của BC, tia AM cắt HO tại G. cm G là trọng tâm của tam giác ABC
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn tâm O bán kính R. Gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC
a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn
b) Vẽ đường cao AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau .Suy ra AB.AC=2R.AD
Cho tam giác ABC nhọn nội tiếp (O; R). Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
a) Chứng minh: Tứ giác BCEF và tứ giác AEHF nooin tiếp
b) Gọi M< N lần lượt là giao điểm của BE và CF với (O). Chứng minh: OA vuông góc với MN và AH . AD + BH . BE = AB2
c) Tia phân giác của goác BAC cắt (O) tại K và cắt BC tại I. Gọi J là tâm đường tròn ngoại tiếp tam giác AIC. Chúng minh: KO và CJ cắt nhau tại một điểm trên (O)
mọi người cho mình xin câu c thôi ạ