a) \(\dfrac{2\left(x-2\right)}{x\left(x-2\right)}=\dfrac{2}{x}\)
\(a,=\dfrac{2\left(x-2\right)}{x\left(x-2\right)}=\dfrac{2}{x}\\ b,=\dfrac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)-\left(3x-2\right)}{2x\left(2x-1\right)}\\ =\dfrac{\left(1-3x\right)\left(2x-1\right)+\left(2x-1\right)\left(3x-2\right)}{2x\left(2x-1\right)}\\ =\dfrac{\left(2x-1\right)\left(1-3x+3x-2\right)}{2x}=\dfrac{-1}{2x}\)
a \(\dfrac{2x-4}{x^2-2x}\)= \(\dfrac{2\left(x-2\right)}{x\left(x-2\right)}\)=\(\dfrac{2}{x}\)
b: \(=\dfrac{-\left(3x-1\right)\left(2x-1\right)+6x^2-4x-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-6x^2+5x-1+6x^2-7x+2}{2x\left(2x-1\right)}=\dfrac{-2x+1}{2x\left(2x-1\right)}=\dfrac{-1}{2x}\)