\(x^2-4x+y^2-6y+15=0\)
\(\Rightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=-2\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\forall x;y\)
mà \(\left(x-2\right)^2+\left(y-3\right)^2=-2\)
\(\Rightarrow\)Phương trình vô nghiệm.
\(x^2-4x+y^2-6y+15=0\)
\(\Leftrightarrow x^2-4x+4+y^2-6y+9+2=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\)
Mà:
\(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2\ge2\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\) (vô lý)
⇒ Phương trình vô nghiệm:
\(x\in\varnothing\)