Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thành Nam

Giải phương trình:
a) (x+2).\(\sqrt{x-3}=0\)

b) \(x+\sqrt{x-2}=2\sqrt{x-1}\)

c) \(x^2+x+12\sqrt{x+1}=36\)

d) \(\sqrt{5-x}=2x-7\)

e) \(x^2+4x+5=2\sqrt{2x+3}\)

Nguyễn Ngọc Huy Toàn
15 tháng 6 2022 lúc 19:37

`a)`\(\left(x+2\right)\sqrt{x-3}=0\)

\(ĐK:x\ge3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\sqrt{x-3}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{3\right\}\)

`b)`\(x+\sqrt{x-2}=2\sqrt{x-1}\)

\(ĐK:x\ge2\)

\(\Leftrightarrow x^2+x-2+2x\sqrt{x-2}=4x-4\)

\(\Leftrightarrow2x\sqrt{x-2}+x^2-3x+2=0\)

\(\Leftrightarrow2x\sqrt{x-2}+\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left[2x+\left(x-1\right)\sqrt{x-2}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\2x+\left(x-1\right)\sqrt{x-2}=0\left(vô.lý\right)\end{matrix}\right.\) ( vì \(x\ge2\) )

Vậy \(S=\left\{2\right\}\)

 

 

 

Nguyễn Ngọc Huy Toàn
15 tháng 6 2022 lúc 20:16

`c)`\(x^2+x+12\sqrt{x+1}=36\)

\(ĐK:x\ge-1\)

\(\Leftrightarrow x^2+x+12\sqrt{x+1}-36=0\)

\(\Leftrightarrow x^2+2x+1-x-1+12\sqrt{x+1}-36=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x+1-12\sqrt{x+1}+36\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)

`@`TH1:\(x+1=\sqrt{x+1}-6\)

\(\Leftrightarrow x+1-\sqrt{x+1}+6=0\)

Đặt \(\sqrt{x+1}=a;a\ge0\)

\(\Leftrightarrow a^2-a+6=0\)

\(\Delta=\left(-1\right)^2-4.6=-23< 0\)

`->` pt vô nghiệm

`@`TH2:\(x+1=6-\sqrt{x+1}\)

\(\Leftrightarrow x+1+\sqrt{x+1}-6=0\)

Đặt \(\sqrt{x+1}=a;a\ge0\)

\(\Leftrightarrow a^2+a-6=0\)

\(\Delta=1^2-4.\left(-6\right)=25>0\)

\(\rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{25}}{2}=2\left(tm\right)\\x=\dfrac{-1-\sqrt{25}}{2}=-3\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

`d)`\(\sqrt{5-x}=2x-7\)

\(ĐK:\dfrac{7}{2}\le x\le5\)

\(\Leftrightarrow\left(\sqrt{5-x}\right)^2=\left(2x-7\right)^2\)

\(\Leftrightarrow5-x=4x^2-28x+49\)

\(\Leftrightarrow4x^2-27x+44=0\)

\(\Delta=\left(-27\right)^2-4.4.44=25>0\)

\(\rightarrow\left\{{}\begin{matrix}x=\dfrac{27+5}{8}=4\left(tm\right)\\x=\dfrac{27-5}{8}=\dfrac{11}{4}\left(ktm\right)\end{matrix}\right.\)

Vậy \(S=\left\{4\right\}\)

`e)`\(x^2+4x+5=2\sqrt{2x+3}\)

\(ĐK:x\ge-\dfrac{3}{2}\)

\(\Leftrightarrow x^2+2x+3-2\sqrt{2x+3}+1+2x+1=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1\right\}\)

Nguyễn Lê Phước Thịnh
15 tháng 6 2022 lúc 19:27

a: \(\left(x+2\right)\cdot\sqrt{x-3}=0\)

=>x-3=0 hoặc x+2=0

=>x=3

d: \(\sqrt{5-x}=2x-7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =5\\\left(2x-7-5+x\right)\left(2x-7+5-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =5\\\left(3x-12\right)\left(x-2\right)=0\end{matrix}\right.\Leftrightarrow x=4\)


Các câu hỏi tương tự
Xem chi tiết
bí ẩn
Xem chi tiết
3 - Lâm Võ Phước Duy - 9...
Xem chi tiết
khuathuuthien
Xem chi tiết
Minh Anh
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Chau Pham
Xem chi tiết
Ngọc Hoàng Khương Nguyễn
Xem chi tiết
Phạm Hà Linh
Xem chi tiết
Phuonganh Nhu
Xem chi tiết