\(x^3+x^2+x^2+x=0\)
\(\Rightarrow x.\left(x^2+2x+1\right)=0\)
TH1: x=0
TH2: \(x^2+2x+1=0\)
\(x^2+2x=-1\)
\(x.\left(x+2\right)=-1\)
Mà \(Ư\left(-1\right)=\left\{-1;1\right\}\)
x<x+2 => x=-1; x+2=1
Ta đều có x=-1
Vậy \(x\in\left\{-1;0\right\}\)
(x^3+x^2)+(x^2+x)=0
<=>x2.(x+1)+x.(x+1)=0
<=>x.(x+1)(x+1)=0
<=>x=0 hoặc x=-1
(x^3+x^2)+(x^3+x)=0
<=>x^3+x^2+x^2+x=0
<=>x.(x^2+x+x+1)=0
Do đó x=0
Hoặc x^2+x+x+1=0
=>x.(x+1)+(x+1)=0
=>(x+1)2=0=>x=-1
Vậy x E {-1;0}