Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Câu 1 :tìm x\(\sqrt{x-2\sqrt{3x-9}}\) =\(2\sqrt{x-3}\)
câu 2:chờ a,b,c,d là các số nguyên thỏa mãn a<b<c<d và a+b=b+c .CMR a^2 +b^2 +c^2+d^2 là tổng 3 số chính phương
câu 3 :cho tam giác vuông ABC ( A=90) ,AD là phân giác của A ( D thuộc BV chứng minh \(\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{2}\)
câu4 :Tìm tất cả số tự nhiên sao cho \(n^2+17\) là số chính phương
Câu 5: cho 3 số dương x,y,z tổng =1 ,CMR : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>hoặc=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) làm giúp mình cái ,THANK YOU SO MUCH ,làm đc bão like
Cho C=\(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\) và xyz=4. Tính \(\sqrt{C}\)
Cho \(x,y\ge0\) . Chứng minh \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+4\sqrt{2}\sqrt{\frac{xy+yz+xz}{x^2+y^2+z^2}}\ge6\)
Anh chị giúp em với ạ
Cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính giá trị của biểu thức A
A= x\(\sqrt{\frac{\left(1+y^2\right)\left(y^2+z^2\right)}{1+x^2}}+\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+x^2}}\)
CMR : với mọi x,y,z :
a. \(x^2+y^2+z^2\ge xy+yz+zx\)
b. \(x^2+y^2+z^2\ge2xy-2xz+2yz\)
c. \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
tìm các số x,y,z biết rằng x√yz=8;y√zx=2;z√xy=1
Cho x, y, z > 0. CM: \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+xy}\ge1\)
Cho 3 số dương x,y,z thỏa mãn điều kiện xy+yz+xz=2010.CMR: giá trị của biểu thứ sau k phụ tuộc vào biến x;y;z
P=\(x\sqrt{\frac{\left(2010+y^2\right)\left(2010+z^2\right)}{2010+x^2}}\)+ \(y\sqrt{\frac{\left(2010+z^2\right)\left(2010+x^2\right)}{2010+y^2}}\)+\(z\sqrt{\frac{\left(2010+x^2\right)\left(2010+y^2\right)}{2010+z^2}}\)