Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hương Lê

Giải giúp em câu Hs này với ạ

loading...  

Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 0:34

4: \(x^2-2\left(m+1\right)x+m-4=0\left(1\right)\)

Thay m=1 vào phương trình (1), ta được:

\(x^2-2\cdot\left(1+1\right)x+1-4=0\)

=>\(x^2-4x-3=0\)

=>\(x^2-4x+4-7=0\)

=>\(\left(x-2\right)^2=7\)

=>\(x-2=\pm\sqrt{7}\)

=>\(x=2\pm\sqrt{7}\)

5: Để phương trình (1) có hai nghiệm trái dấu thì \(1\cdot\left(m-4\right)< 0\)

=>m-4<0

=>m<4

6: \(\text{Δ}=\left(-2m-2\right)^2-4\left(m-4\right)\)

\(=4m^2+8m+4-4m+16\)

\(=4m^2+4m+20\)

\(=4m^2+4m+1+19=\left(2m+1\right)^2+19>0\forall m\)

=>Phương trình (1) luôn có hai nghiệm phân biệt

Áp dụng định lí Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=m-4\end{matrix}\right.\)

\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)

\(=\sqrt{4m^2+8m+4-4m+16}\)

\(=\sqrt{4m^2+4m+1+19}\)

\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\forall m\)

Dấu '=' xảy ra khi 2m+1=0

=>2m=-1

=>\(m=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\sqrt{19}\) khi \(m=-\dfrac{1}{2}\)


Các câu hỏi tương tự
Hương Lê
Xem chi tiết
Hương Lê
Xem chi tiết
Hương Lê
Xem chi tiết
Hương Lê
Xem chi tiết
Kim Thư
Xem chi tiết
Minh Trần
Xem chi tiết
Phương Thảo
Xem chi tiết
Hương Lê
Xem chi tiết
Nguyễn Cửu
Xem chi tiết