Giải bất phương trình: \(\sqrt{x+2}-\sqrt{x-6}>2\)
giải phương trình:(8x-6)căn(x-1)=(2+căn x-2)(x +4 căn x-2)+3)
Giải bất phương trình 2 x + 2 - x - 3 < 0
A. log 2 3 - 5 2 < x < log 2 3 + 5 2
B. x < log 2 3 - 5 2 , x > log 2 3 + 5 2
C. log 2 4 - 5 2 < x < log 2 4 + 5 2
D. x < log 2 4 - 5 2 , x > log 2 4 + 5 2
Giải bất phương trình log 1 2 ( x − 1 ) > 2 .
A. 1 < x < 5 4
B. x > 5 4
C. x > 1
D. x < 5 4
Bất phương trình logarit
$$1) \sqrt{log_{1/2}^{2} \frac{2x}{4-x} - 4} \leq \sqrt{5}$$
$$2)log_{2}(x-1)^{2} > 2log_{2} (x^{3} +x +1)$$
$$3)\frac{1}{log_{2}(4x)^{2} +3 } + \frac{1}{log_{4} 16x^{3}-2} <-1$$
$$4)log_{2} (4^{x}+4) < log_{\frac{1}{2}} (2^{x+1} -2)$$
tìm các giá trị nguyên của x nghiệm đúng cả hai bất phương trình sau:
\(\frac{x+4}{5}-x+4>\frac{x}{3}-\frac{x-2}{2}\)
\(x-\frac{x-3}{8}>=3-\frac{x-3}{12}\)
Giải bất phương trình: 3 4 2 x - 1 ≤ 4 3 - 2 + x ta được nghiệm là
A. x ³ 1.
B. x < 1.
C. x £ 1
D. x > 1
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Bất phương trình 2 - x + 3 x - 1 ≤ 6 có tập nghiệm là:
A. - ∞ ; 2
B. - ∞ ; 9 4
C. - ∞ ; 9 4
D. - ∞ ; 2
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3