Cho hàm số y = f(x) = 2 x + m x - 1 . Tính tổng các giá trị của tham số m để m a x [ 2 ; 3 ] f ( x ) - m i n [ 2 ; 3 ] f ( x ) = 2.
A. -4
B. -2
C. -1
D. -3
Cho hàm số y = f(x) = 2 x + m x - 1 . Tính tổng các giá trị của tham số m để m a x [ 2 ; 3 ] f ( x ) - m i n [ 2 ; 3 ] f ( x ) = 2
A. -4
B. -2
C. -1
D. -3
Cho hàm số f(x) = x - m 2 + m x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng – 2.
A. m= 1
B. m= -2
C. m= -1
D. m= -1 hoặc m= 2
Cho hàm số y=f(x) có đạo hàm f'(x) = ( x 2 - 1 ) ( x - 2 ) . Gọi S là tập tất cả các giá trị nguyên của tham số m để hàm số f ( x 2 + m ) có 5 điểm cực trị. Số phần tử của tập S là.
A. 4
B. 1
C. 3
D. 2
Cho hàm số f ( x ) = 5 x - 1 - 2 x - 1 k h i x > 1 m x + m + 1 4 k h i x ≤ 1 (m là tham số). Giá trị của m để hàm số liên tục trên R là:
A. .
B. .
C. .
D. .
Cho hàm số
f(x)= x 2 + 4 - 2 x 2 khi x ≠ 0 2 a - 5 4 khi x = 0
Tìm giá trị thực của tham số a để hàm số f(x) liên tục tại x=0
A. a= -3/4
B. a= 4/3
C. a= -4/3
D. a= 3/4
Cho hàm số y= f( x) ( x-1) liên tục trên R và có đồ thị như hình vẽ.
Tìm tất cả các giá trị của tham số m để phương trình f(x) : |x - 1| = m có số nghiệm lớn nhất
A. ( -0, 6; 0]
B. (-0,6; 0)
C. (0; 0,06)
D. ( 0; 0,6)
Cho hàm số f ( x ) = x 3 - ( m - 1 ) x 2 + ( 5 - m ) x + m 2 - 5 . Có bao nhiêu giá trị nguyên của tham số m để hàm số g x = f x có 5 điểm cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
Cho hàm số y = ax 3 + bx 2 + cx + d với a ≠ 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
A. .
B. .
C. .
D. .