\(\Leftrightarrow x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)=2011\)
\(\Leftrightarrow x\cdot\dfrac{2011}{2012}=2011\)
hay x=2012
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2012}\right)x=2011\)
\(\dfrac{2011}{2012}x=2011\)
\(x=2012\)
`(1/[1.2]+1/[2.3]+1/[3.4]+....+1/[2011.2012])x=2011`
`(1-1/2+1/2-1/3+1/3-1/4+.....+1/2011-1/2012)x=2011`
`(1-1/2012)x=2011`
`2011/2012x=2011`
`x=2011:2011/2012`
`x=2012`
\(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\right)\cdot x=2011\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}+\dfrac{1}{2011}-\dfrac{1}{2012}\right)\cdot x=2011\)
\(\left(1-\dfrac{1}{2012}\right)\cdot x=2011\)
\(\dfrac{2011}{2012}\cdot x=2011\)
\(x=2011:\dfrac{2011}{2012}\)
\(x=2012\)