Do B là giao điểm (d) với Ox
\(\Rightarrow y_B=0\Rightarrow\left(m+1\right)x_B+3=0\Rightarrow x_B=-\dfrac{3}{m+1}\) (với \(m\ne-1\))
\(\Rightarrow OB=\left|x_B\right|=\dfrac{3}{\left|m+1\right|}\)
Pt hoành độ giao điểm (d) và (d'):
\(\left(m+1\right)x+3=2x+3\Rightarrow x=0\)
\(\Rightarrow y_A=2.0+3=3\) \(\Rightarrow OA=\left|y_A\right|=3\)
\(OA=2OB\Rightarrow3=\dfrac{6}{\left|m+1\right|}\Rightarrow\left|m+1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)