\(A=\log_a\left(a^2\sqrt[4]{a^3\sqrt[5]{a}}\right)=\log_a\left(a^2\sqrt[4]{a^3.a^{\frac{1}{5}}}\right)=\log_a\left[a^2\left(a^{\frac{16}{5}}\right)^{\frac{1}{4}}\right]=\log_a\left(a^2.a^{\frac{4}{5}}\right)=\frac{14}{5}\)
\(A=\log_a\left(a^2\sqrt[4]{a^3\sqrt[5]{a}}\right)=\log_a\left(a^2\sqrt[4]{a^3.a^{\frac{1}{5}}}\right)=\log_a\left[a^2\left(a^{\frac{16}{5}}\right)^{\frac{1}{4}}\right]=\log_a\left(a^2.a^{\frac{4}{5}}\right)=\frac{14}{5}\)
Đơn giản biểu thức sau :
\(M=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a\sqrt{a}}\right|\)
Đơn giản biểu thức sau :
\(D=\frac{\log_2\left(2a^2\right)+\left(\log_2a\right)a^{\log_2\left(\log_2a+1\right)}+\frac{1}{2}\log^2_2a^4}{\log_2a^3\left(3\log_2a+1\right)+1}\)
Hãy biểu diễn theo a ( hoặc cả b hoặc cả c) các biểu thức sau :
\(C=\log40\) biết \(\log_{\sqrt{2}}\left(\frac{1}{\sqrt[3]{5}}\right)=a\)
Tính giá trị của biểu thức :
\(A=\log_3\left(\log_{2\sqrt{2}}\sqrt[3]{\sqrt{2}}\right)\)
Cho \(\log_ab=3;\log_ac=-2\)
Tính \(\log_ax\) biết :
1. \(x=a^3b^2\sqrt{c}\)
2. \(x=\frac{a^4\sqrt[3]{b}}{c^3}\)
3. \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\)
Cho các số thực a, b, c thỏa mãn 1 < a < b < c. Chứng minh rằng :
\(\log_a\left(\log_ab\right)+\log_b\left(\log_bc\right)+\log_c\left(\log_ca\right)>0\)
Tính toán các biểu thức
a) \(A=\log_{\frac{1}{25}}5\sqrt[4]{5}\)
b) \(B=9^{\frac{1}{2}\log_32-2\log_{27}3}\)
c) \(C=\log_3\log_28\)
d) \(D=2\log_{\frac{1}{3}}6-\frac{1}{2}\log_{\frac{1}{2}}400+3\log_{\frac{1}{3}}\sqrt[3]{45}\)
Tính giá trị của biểu thức :
\(D=\left(\sqrt[3]{9}\right)^{\frac{3}{2\log_53}}\)
Rút gọn biểu thức sau :
\(A=\left(\log_ab+\log_ba+2\right)\left(\log_ab-\log_{ab}b\right)\log_ba-1\)