đk x >= 0
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kêt hợp đk vậy 0 =< x < 9
đk x >= 0
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kêt hợp đk vậy 0 =< x < 9
\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}
\)
\(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
\(\left(1-\dfrac{4}{\sqrt{x}-1}+\dfrac{1}{x-1}\right):\left(\sqrt{x}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
TÌM ĐKXĐ VÀ RÚT GỌN
\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{1-\sqrt[]{x}}{x+\sqrt{x}}\right)\)
\(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\)
\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
RÚT GON
Tìm x
1) \(\sqrt{\dfrac{3x-1}{x+2}}=2\)
2)\(\sqrt{\dfrac{5x-7}{2x- 1}}=2\)
3)\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
4) \(\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Tìm `x >= 0`
\(\dfrac{1}{\sqrt{x}+2}>\dfrac{1}{5}\)
\(\dfrac{2}{\sqrt{x}+3}< \dfrac{1}{2}\)
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}>1\)
\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}< \dfrac{1}{3}\)
P=(\(\dfrac{x-2}{x+2\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x+2}}\)).\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với x >0 và x≠1
A=(\(\dfrac{2}{\sqrt{x}-2}\)+\(\dfrac{3}{2\sqrt{x+1}}\)-\(\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\)):\(\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) với x > 0 và x≠4
A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x-1}}\)+\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\) với x≥0 và x≠1
V=(\(\dfrac{1}{\sqrt{x}+2}\)+\(\dfrac{1}{\sqrt{x}-2}\))\(\dfrac{\sqrt{x}+2}{\sqrt{x}}\) với x>0 và x≠4
A=(\(\dfrac{1}{x-1}\)+\(\dfrac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\))(\(\dfrac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}\)-1)
P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}\)+\(\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
MỌI NGƯỜI GIÚP ĐỠ MÌNH RÚT GỌN MẤY BIỂU THỨC NÀY VỚI Ạ . EM XIN CẢM ƠN
Rút gọn
(\(\dfrac{\sqrt{x}}{3+\sqrt{x}}\)+\(\dfrac{2x}{9-x}\)):(\(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\))
(\(\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}+\dfrac{x+9}{25-x}\)):\(\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)
(\(\dfrac{1}{x-4}-\dfrac{1}{x-4\sqrt{x}+4}\)):\(\dfrac{\sqrt{x}}{2\sqrt{x}-x}\)
Bài: Rút gọn biểu thức sau
1)(1-\(\dfrac{\sqrt{x}}{1-\sqrt{x}}\)):(\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)+\(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\))
2)(\(\dfrac{1}{\sqrt{x}+1}\)-\(\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\)):(\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{2}{x-1}\))
Thu gọn và cho bt tập xác định của biểu thức
A= \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-2}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}+2\sqrt{x-5}}{x\sqrt{x}+1}\)
B= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
C= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
D= \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\sqrt{x}-1}{x-5\sqrt{x}+2}\)
E= \(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
Ch.minh
a) \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)-\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) = \(\dfrac{3\sqrt{x}-1}{x-1}\)
b) (\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)-\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) ) : \(\dfrac{1}{x-4}\) = -4\(\sqrt{x}\)
\(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}+1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)
RÚT GONJ