Đúng. Vì khi ta quy đồng lên ta có
1/299=1.2/299.2=2/2100
Vậy 2/2100=1/299
Chúc bạn học tốt!
ta có :\(\dfrac{2}{2^{100}}=\dfrac{1}{2^{99}}\Rightarrow\dfrac{2}{2^{100}}=\dfrac{1}{2^{99}}\)
Đúng. Vì khi ta quy đồng lên ta có
1/299=1.2/299.2=2/2100
Vậy 2/2100=1/299
Chúc bạn học tốt!
ta có :\(\dfrac{2}{2^{100}}=\dfrac{1}{2^{99}}\Rightarrow\dfrac{2}{2^{100}}=\dfrac{1}{2^{99}}\)
Chứng minh rằng :
1- \(\dfrac{1}{2^2}\) - \(\dfrac{1}{3^2}\) - … - \(\dfrac{1}{100^2}\) > \(\dfrac{1}{100}\)
giúp mình với mình cần gấp
\(\dfrac{7}{1\cdot2}+\dfrac{7}{2\cdot3}+\dfrac{7}{3\cdot4}+...+\dfrac{7}{99\cdot100}\)
giúp mình với mai mình phải nộp rùi!!
Cho: A= 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2^{100}-1}\)
Chứng minh rằng: 50 < A < 100
Giúp mình với!
Tính giá trị của biểu thức:
\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
Nhanh nhé mình cần gấp lắm!!!
\(\left(\dfrac{1}{2^2}-1\right)\).\(\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)\).....\(\left(\dfrac{1}{100^2}-1\right)\)
giúp mình nhanh với. tối mình phải nộp rùi huhuhu
\(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).\cdot\cdot\cdot.\left(\dfrac{1}{99}+1\right)\) làm ơn giúp mình với
\(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
94-\(\dfrac{1}{7}-\dfrac{2}{8}-\dfrac{3}{9}-...-\dfrac{94}{100}\)
\(\dfrac{1}{35}+\dfrac{1}{40}+\dfrac{1}{45}+...+\dfrac{1}{500}\)
giúp mik nha mik cần gấp
\(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)<\(\dfrac{3}{16}\)CMR
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)