b: Ta có: \(\sqrt[3]{-0.008}-\dfrac{1}{5}\cdot\sqrt[3]{64}+5\cdot\sqrt[3]{\left(-5\right)^3}\)
\(=-\dfrac{1}{5}-\dfrac{1}{5}\cdot4+5\cdot\left(-5\right)\)
\(=-\dfrac{1}{5}-\dfrac{4}{5}-25\)
=-26
b: Ta có: \(\sqrt[3]{-0.008}-\dfrac{1}{5}\cdot\sqrt[3]{64}+5\cdot\sqrt[3]{\left(-5\right)^3}\)
\(=-\dfrac{1}{5}-\dfrac{1}{5}\cdot4+5\cdot\left(-5\right)\)
\(=-\dfrac{1}{5}-\dfrac{4}{5}-25\)
=-26
1) Tính:
\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5-1}}\)
\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
Giúp mình với, mình cần gấp
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
cho x=\(\left(\dfrac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}\right)\sqrt[3]{8+3\sqrt{5}}\);y=\(\left(\dfrac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}\right)\)
a rút gọn x và y
b tính T = xy
Thực hiện phép tính:
a) (\(\dfrac{6}{\sqrt{3}}\) - 2\(\sqrt{48}\)) (\(\sqrt{3}\) - 1)
b) \(\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-3}\) - \(\sqrt{9-4\sqrt{5}}\)
c) 3\(\sqrt{2a}\) - \(\sqrt{18a^3}\) + 4\(\sqrt{\dfrac{a}{2}}\) - \(\dfrac{1}{4}\)\(\sqrt{128a}\) với a \(\ge\) 0
Gấp lắm . Giúp mình cảm ơn ạ
Bài 1
\(2\sqrt{\left(1+\sqrt{3}\right)^{ }3}-\sqrt{\left(2\sqrt{3}-3\right)^2}\)
\(\left(1+\sqrt{3}-\sqrt{5}\right).\left(1+\sqrt{3}+\sqrt{5}\right)\)
\(\left(\sqrt[]{\dfrac{8}{3}}-\sqrt{5}\right)x\sqrt{6}\)
\(\left(5+4\sqrt{2}\right).\left(3+2\sqrt{1}+\sqrt{2}\right).\left(3-2\sqrt{1}+2\right)\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
THỰC HIỆN PHÉP TÍNH
1,\(\sqrt{1\dfrac{9}{16}}\)
2,\(\dfrac{\sqrt{12,5}}{0,5}\)
3,\(\sqrt{\dfrac{25}{64}}\)
4,\(\dfrac{\sqrt{230}}{\sqrt{2,3}}\)
5,\((\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}).\sqrt{6}\)
Bài 1: Tính
a) \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
b) \(1\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)
c) \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
Bài 2: Cho (d₁): y = \(\dfrac{1}{2}x-4\) và (d₂): y = \(-3x+3\) . Vẽ (d₁) và (d₂) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm A của 2 đường thẳng trên.
Helpp!!