(1/m+1/n+1/p)^2=25
=>1/m^2+1/n^2+1/p^2+2(1/mn+1/pn+1/mp)=25
=>\(5+2\cdot\dfrac{m+n+p}{mnp}=25\)
=>\(2\cdot\dfrac{m+n+p}{mnp}=20\)
=>\(\dfrac{m+n+p}{mnp}=10\)
=>m+n+p=10mnp
(1/m+1/n+1/p)^2=25
=>1/m^2+1/n^2+1/p^2+2(1/mn+1/pn+1/mp)=25
=>\(5+2\cdot\dfrac{m+n+p}{mnp}=25\)
=>\(2\cdot\dfrac{m+n+p}{mnp}=20\)
=>\(\dfrac{m+n+p}{mnp}=10\)
=>m+n+p=10mnp
Đưa các biểu thức sau thành phân thức:
a) M=\(\dfrac{\dfrac{y}{4}-2+\dfrac{15}{4y}}{\dfrac{y}{2}+\dfrac{6}{y}-\dfrac{7}{2}}\) với y \(\ne\) 0; y \(\ne\) 3 và y \(\ne\) 4
b) N=\(\dfrac{3b-\dfrac{1}{9b^2}}{1+\dfrac{1}{3b}+\dfrac{1}{9b^2}}\) với b \(\ne\) 0
Giúp mình với.
\(9m^2\)+\(n^2\). (\(\dfrac{1}{9m^2}\)+\(\dfrac{1}{n^2}\)) ≥ 4
với m và n là hai số dương
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\) n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\) n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
Chứng minh với mọi số tự nhiên \(n\ge2\) :
\(M=\left(1-\dfrac{3}{2.4}\right).\left(1-\dfrac{3}{3.5}\right).\left(1-\dfrac{3}{4.6}\right).\left(1-\dfrac{3}{5.7}\right)...\left(1-\dfrac{3}{n\left(n+2\right)}\right)>\dfrac{1}{4}\)