\(B=m^2-mn+m-n^2-n+mn=m^2-n^2+n-n\\ =\left(m-n\right)\left(m+n+1\right)\\ =\left(-\dfrac{2}{3}+\dfrac{1}{3}\right)\left(-\dfrac{2}{3}-\dfrac{1}{3}+1\right)=-\dfrac{1}{3}\cdot0=0\)
\(B=m^2-mn+m-n^2-n+mn=m^2-n^2+n-n\\ =\left(m-n\right)\left(m+n+1\right)\\ =\left(-\dfrac{2}{3}+\dfrac{1}{3}\right)\left(-\dfrac{2}{3}-\dfrac{1}{3}+1\right)=-\dfrac{1}{3}\cdot0=0\)
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\) n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
Cho biểu thức M = \(\dfrac{x+1}{x-2}\)và N = \(\dfrac{x+1}{x-3}\)- \(\dfrac{2}{x-3}\)+ \(\dfrac{5x+3}{x^2-9}\)
a) Rút gọn N
b) Tìm các giá trị nguyên của x để P = M.N nhận giá trị nguyên
B=m(m-n+1)-n(n+1-m) với m= -2323 n= -1313
tính giá trị của các biểu thức sau
Cho biểu thức: \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)
a, Rút gọn biểu thức A.
b, CMR biểu thức A luôn dương.
c, Với giá trị nào của m thì A đạt giá trị lớn nhất
Đưa các biểu thức sau thành phân thức:
a) M=\(\dfrac{\dfrac{y}{4}-2+\dfrac{15}{4y}}{\dfrac{y}{2}+\dfrac{6}{y}-\dfrac{7}{2}}\) với y \(\ne\) 0; y \(\ne\) 3 và y \(\ne\) 4
b) N=\(\dfrac{3b-\dfrac{1}{9b^2}}{1+\dfrac{1}{3b}+\dfrac{1}{9b^2}}\) với b \(\ne\) 0
Giúp mình với.
+) Tìm dư của phép chia đa thức x2022-x2021+2020 cho đa thức x2-1
+) CMR: Với mọi n∈N và 2n+3; 3n+1 đều là SCP thì n⋮40
+) Cho biểu thức \(M=\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}\)
CMR: Nếu M=1 thì 2 trong 3 phân thức đã cho của biểu thức M bằng 0, phân thức còn lại bằng 1.