\(=\left(x^2+y^2-5\right)^2-\left[2\left(xy+2\right)\right]^2\\ =\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\\ =\left[\left(x-y\right)^2-9\right]\left[\left(x+y\right)^2-1\right]\\ =\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(\left(x^2+y^2-5\right)^2-4\left(x^2y^2+4xy+4\right)\)
\(=\left(x^2+y^2-5\right)^2-4\left(xy+2\right)^2\)
\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)
\(=\left(x^2+y^2-2xy-9\right)\left(x^2+y^2+2xy-1\right)\)
\(=\left[\left(x-y\right)^2-9\right]\left[\left(x+y\right)^2-1\right]=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(=\left(x^2+y^2-5\right)^2-4\left(xy+2\right)^2\)
\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)
\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)
\(=\left[\left(x-y\right)^2-9\right]\left[\left(x-y\right)^2-1\right]\)
\(=\left(x-y-3\right)\left(x-y+3\right)\left(x-y-1\right)\left(x-y+1\right)\)