`(sqrt a)^2 = -3`.
`<=> |a| = -3`
Vì `|a| >=0 forall a in RR`
`->` Không có giá trị t/m
`(sqrt a)^2 = -3`.
`<=> |a| = -3`
Vì `|a| >=0 forall a in RR`
`->` Không có giá trị t/m
Có bao nhiêu giá trị của x thỏa mãn \(\left(\sqrt{x}-4\right)\left(x^2-4\right)=0\)
A. 2 B. 4 C. 3 D. 1
đáp án+giải thích
Cần gấp !!!
Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn
Tính giá trị biểu thức:
\(Q=\dfrac{a^3+b^3+c^3}{abc}\) với \(a,b,c\) thỏa mãn: \(\left(3a-2b\right)^2+\left|4b-3c\right|\le0\)
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Có bao nhiêu giá trị của x thỏa mãn biểu thức:
A. 3 B. C. 2 D.
Cho 2 số a,b thỏa mãn\(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\) Tính giá trị của biểu thức M=\(2018\left(a+b\right)^2\)
số các giá trị của x thỏa mãn :
\(\frac{\left|x-7\right|}{\left|x-4\right|}=\frac{\left|x-1\right|}{\left|x-4\right|}\)là bao nhiêu?
1.Có bao nhiêu giá trị của \(\left|2x-1\right|=5\) thỏa mãn
A. 0 B. 1 C. 3 D.2
2. Tìm x, biết \(\dfrac{\left(-3\right)^x}{81}=-27\)
A. x=7 B. x=2187 C. x=3 D. x = -7
Cho x, y thỏa mãn: \(\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}=0\)
Tính giá trị của biểu thức: \(P=2x^3+15y^3+2016\)
1 Tìm giá trị nhỏ nhất của bểu thức \(C=\frac{6}{\left|x\right|-3}\) với x là số nguyên
2 . Tìm giá trị lớn nhất của biểu thức x-|x|
3 . Tìm các số a và b thỏa mãn một điều trong các điều kiện sau :
a ) a+b = |a| + |b|
b ) a+b = |b| - |a|
4 . Có bao nhiêu cặp số nguyên (x;y) thỏa mãn một trong các điều kiện sau :
a ) |x| + |y| = 20
b) |x| + |y| <20
( Các cặp số (3;4) và (4;3) là 2 cặp số khác nhau )