Giả sử ( 3n - 2 : 4n - 3 ) = d do n ∈ N* ⇒ d ∈ N
Suy ra: 3n - 2 ⋮ d và 4n - 3 ⋮ d
3n - 2 ⋮ d ⇒ 12n - 8 ⋮ d
Mặt khác: 4n - 3 ⋮ d ⇒ 12n - 9 ⋮ d ⇒ ( 12n - 8 ) - 1 ⋮ d
⇒ 1 ⋮ d hay suy ra d = 1
Vậy các phân số \(\dfrac{3n-1}{4n-3}\) với n ∈ N* là phân số tối giản
Gọi a=UCLN(3n-2;4n-3)
\(\Leftrightarrow\left\{{}\begin{matrix}12n-8⋮a\\12n-9⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Do đó: Phân số 3n-2/4n-3 là phân số tối giản
Giả sử ( 3n - 2 : 4n - 3 ) = d do n ∈ N* ⇒ d ∈ N
Suy ra: 3n - 2 ⋮ d và 4n - 3 ⋮ d
3n - 2 ⋮ d ⇒ 12n - 8 ⋮ d
Mặt khác: 4n - 3 ⋮ d ⇒ 12n - 9 ⋮ d ⇒ ( 12n - 8 ) - 1 ⋮ d
⇒ 1 ⋮ d hay suy ra d = 1
Vậy các phân số \(\dfrac{3n-1}{4n-3}\) với n ∈ N* là phân số tối giản