cho tam giác abc với trung tuyến am gọi i là trung điểm AM . CM : 2 vecto IA+ vecto IB+ vecto IC = vecto 0
Cho tam giác ABC các điểm M N thỏa mãn vectơ MN = 2 vectơ ma + vectơ MB - vecto MC . tìm điểm I thỏa mãn 2 vecto IA + 3 vecto IB- vecto IC= vecto 0 .
mk cần gấp các b giúp mk vs
cho tam giác ABC. Các điểm M và N thỏa mãn : vecto MN= 2 vecto MA- vecto MB+ vecto MC
a) tìm điểm I sao cho 2 vecto IA - vecto IB + vecto IC = vecto 0
b) CM : đường thẳng MN luôn đi qua một điểm cố định
c) Gọi P là trung điểm BN . CM đường thẳng MP luôn đi qua một điểm cố định
Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:
Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE
Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:
a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD
b) Vecto AB + vecto CD = Vecto AD + vecto CB
c)Vecto AB - vecto CD = Vecto AB - vecto BD
Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0
Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:
a) Vecto CO - vecto OB = Vecto BA
b) Vecto AB - vecto BC = Vecto DB
c) Vecto DA - vecto DB = Vecto OD - vecto OC
d) Vecto DA - vecto DB + vecto DC = Vecto 0
Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:
a) Vecto a= vecto AB + vecto AC
b) Vecto b= vecto AB + vecto AC + vecto AG
c) Vecto c= vecto BA + vecto BC
d) Vecto d= vecto AB - vecto AC + vecto BI
( Hệ thức trung điểm) Cho hai điểm A và B
a) Cho M là trung điểm AB. CMR I bất kì \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IM}\)
b) Với N sao cho \(\overrightarrow{NA}=-\overrightarrow{NB}\). Cmr với I bất kì \(\overrightarrow{IA}+2\overrightarrow{IB}=3\overrightarrow{IN}\)
c) Với p sao cho \(\overrightarrow{PA}=3\overrightarrow{PB}\). CMR với I bất kì \(\overrightarrow{IA}-3\overrightarrow{IB}=-2\overrightarrow{IP}\)
1.cho 5 điểm A;B;C;D;E;F tìm các vectơ:
a) vecto U= vecto AB+ vecto DC+ vecto BD- vecto AC
b) vecto V=vecto AC+ vecto DE- vecto DC- vecto CE+ vecto CB
2)cho ngũ giác đều ABCDE tâm O CMR:
vecto OH + vecto OB + vecto OC + vecto OD = vecto 0
Giúp mik vs ạ!!
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . CM: vecto IJ=2/5 vecto AC - 2 vecto AB
Chứng minh rằng I là trung điểm của AB \(⇌\)\(\overrightarrow{IA}+\overrightarrow{IB}=0\)
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . ( các b vẽ hình giúp mk nha)
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC