Cho tam giác ABC các điểm M N thỏa mãn vectơ MN = 2 vectơ ma + vectơ MB - vecto MC . tìm điểm I thỏa mãn 2 vecto IA + 3 vecto IB- vecto IC= vecto 0 .
mk cần gấp các b giúp mk vs
cho tam giác abc với trung tuyến am gọi i là trung điểm AM . CM : 2 vecto IA+ vecto IB+ vecto IC = vecto 0
Cho 2 điểm A, B phân biệt cố định. Tìm tập hợp điểm M thỏa mãn | vecto MA + vecto MB | = |vecto MA - vecto MB|
Cho tam giác ABC. Hãy xác định điểm M: vecto MA - vecto MB + vecto MC = 0
Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:
Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE
Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:
a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD
b) Vecto AB + vecto CD = Vecto AD + vecto CB
c)Vecto AB - vecto CD = Vecto AB - vecto BD
Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0
Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:
a) Vecto CO - vecto OB = Vecto BA
b) Vecto AB - vecto BC = Vecto DB
c) Vecto DA - vecto DB = Vecto OD - vecto OC
d) Vecto DA - vecto DB + vecto DC = Vecto 0
Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:
a) Vecto a= vecto AB + vecto AC
b) Vecto b= vecto AB + vecto AC + vecto AG
c) Vecto c= vecto BA + vecto BC
d) Vecto d= vecto AB - vecto AC + vecto BI
cho tam giác ABC , tìm tập hợp điểm M thỏa mãn | 2 lần vecto MA+ 3 lần vecto MB|=|3 lần vecto MB+ 2 lần vecto MC|
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . CM: vecto IJ=2/5 vecto AC - 2 vecto AB
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . ( các b vẽ hình giúp mk nha)
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC