`A=x^2+x+1=x^2+2x. 1/2+1/4+3/4=(x+1/2)^2+3/4`
Vì `(x+1/2)^2 >= 0 AA x<=>(x+1/2)^2+3/4 >= 3/4 > 0AA x`
Hay `A > 0 AA x`
`=>Đpcm`
________________________
`B=4x^2-4x+2=4x^2-4x+1+1=(2x-1)^2+1`
Vì `(2x-1)^2 >= 0 AA x<=>(2x-1)^2+1 >= 1 > 0 AA x`
Hay `B > 0`
`=>Đpcm`
a: \(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(=4x^2-4x+1+1=\left(2x-1\right)^2+1>0\)