Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phú Gia

C/m : \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\)

Trần Thu Uyên
21 tháng 7 2016 lúc 10:56

Ta có \(5=1^2+2^2\) ; \(13=2^2+3^2\) ....

=> mẫu thức sẽ có dạng là \(n^2+\left(n+1\right)^2\)

Dễ dàng chứng ming được BĐT \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\) với mọi n dương

=> \(\frac{1}{5}< \frac{1}{2.1.2}\) ; \(\frac{1}{13}< \frac{1}{2.2.3}\)....; \(\frac{1}{2002^2+2003^2}< \frac{1}{2.2002.2003}\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\right)\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2003}\right)< \frac{1}{2}\)

=> Đpcm

Có j không hiểu có thể hỏi lại mk 

Chúc bạn làm bài tốt

 


Các câu hỏi tương tự
Hảo Đào thị mỹ
Xem chi tiết
Trần Thị Kim Chi
Xem chi tiết
nguyễn minh hà
Xem chi tiết
Nguyễn Ánh Tuyền
Xem chi tiết
phan thị minh anh
Xem chi tiết
wary reus
Xem chi tiết
Vũ Hạ Nguyên
Xem chi tiết
wary reus
Xem chi tiết
le vi dai
Xem chi tiết