Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le vi dai

rút gọn biểu thức:

cho \(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2+4^2}}+\sqrt{1+\frac{1}{4^2}+\frac{1}{5^2}}+...+\sqrt{1+\frac{1}{2012^2}+\frac{1}{2013^2}}\)

Nhan Nhược Nhi
2 tháng 8 2016 lúc 11:40

CM : \(\sqrt{\left(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\right)^2}=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\) 

\(\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}=\frac{n^2\left[\left(n+1\right)^2+1\right]+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\) = \(\frac{n^2\left(n^2+2n+2\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

=\(\frac{n^4+2n^2\left(n+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\) = \(\frac{\left(n^2+n+1\right)^2}{\left(n^2+n\right)^2}\) =>\(\sqrt{\left(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\right)}=\frac{n^2+n+1}{n^2+n}\)

\(=1+\frac{1}{n^2+n}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Ta có : 

A = \(\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+\left(1+\frac{1}{4}-\frac{1}{5}\right)+...+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)

= 2012 - \(\frac{1}{2013}\) \(\approx\) 2012

 

 


Các câu hỏi tương tự
Nguyễn Ánh Tuyền
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
Lee Je Yoon
Xem chi tiết
Tung Nguyễn
Xem chi tiết
wary reus
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
wary reus
Xem chi tiết
NT Ánh
Xem chi tiết
wary reus
Xem chi tiết