Ta có
2a4 + 2b4 + 8 \(\ge\)2ab + 4a + 4b
<=> (2a4 - 4a2 + 2) + (2b4 - 4b2 + 2) + (2a2 - 4a + 2) + (2b2 - 4b + 2) + (a2 - 2ab + b2) + a2 + b2\(\ge\)0
<=> 2(a2 - 1)2 + 2(b2 - 1)2 + 2(a - 1)2 + 2(b - 1)2 + (a - b)2 + a2 + b2 \(\ge\)0 (đúng)
Ta có
2a4 + 2b4 + 8 \(\ge\)2ab + 4a + 4b
<=> (2a4 - 4a2 + 2) + (2b4 - 4b2 + 2) + (2a2 - 4a + 2) + (2b2 - 4b + 2) + (a2 - 2ab + b2) + a2 + b2\(\ge\)0
<=> 2(a2 - 1)2 + 2(b2 - 1)2 + 2(a - 1)2 + 2(b - 1)2 + (a - b)2 + a2 + b2 \(\ge\)0 (đúng)
Cho a,b>0 và a+b=1. Tìm Min F=2/ab + 1/(a2+b2) + (a4+b4)/2
Với các số dương a, b thỏa mãn: (2a-1)2 + (2b-1)2 = 2
Tìm giá trị nhỏ nhất của biểu thức P = a4 + b4 + 2020/(a+b)2
Mong mọi người giúp mình câu này ạ, càng chi tiết càng tốt. Mình xin cảm ơn
Cho `a,b,c>=0`
`a)CM:(a(b+c))/(a^2+bc)+(b(c+a))/(b^2+ca)+(c(a+b))/(c^2+ab)>=2`
Chứng minh giúp mình BĐT cổ xưa này với!!
Cho 3 số a, b, c thực dương thoả mãn abc = 1000. Tìm GTLN của:
P = a/(b4+c4+1000a) + b/(a4+c4+1000b) + c/(a4+b4+1000c)
Cho 4 số a,b,c,d. Chứng minh : a4 + b4 + c4 + d4 >= a^2bc + b^2cd + c^2da + d^2ab
1. a3 + b3 + c3 ≥ a2 . căn (bc) + b2 .căn (ac) + c2 .căn (ab)
2. (a2 + b2 + c2)(1/(a +b ) + 1/(b+c) +1/(a+c) ) ≥ (3/2)(a + b+c)
3. a4 + b4 +c4 ≥ (a + b+c)abc
giúp em với em đang cần gấp ạ
Cho biểu thức P =a4+b4-ab,với a,b là các số thực thoả mãn
a2+b2+ab=3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P
K=a√a4+7+b√b4+7+c√c4+7K=aa4+7+bb4+7+cc4+7
a,b,c>0
ab+bc+ca=3ab+bc+ca=3
tìm max K ?
b1 cm
\(a^2+b^2+1\ge ab+a+b\) \(\forall a;b\)
b2 cm bđt
\(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c-1\right)\)
cm \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y;\forall x,y>0\)