Chứng minh rằng
\(\dfrac{1}{2}< \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{199.200}< 1\)
So sánh:
a)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với 1
b)\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{149}+\dfrac{1}{150}\) với\(\dfrac{1}{3}\)
c)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với \(\dfrac{7}{12}\)
Chứng tỏ rằng:
a, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}< 1\)
b, \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
A = \(\dfrac{1}{101}\)+ \(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+ ... + \(\dfrac{1}{200}\). Chứng minh:
a) A > \(\dfrac{7}{12}\)
b) A > \(\dfrac{5}{8}\)
c) A < \(\dfrac{5}{6}\)
cmr \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{2}\)
Cho S = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
So sánh: a, S và \(\dfrac{1}{2}\)
b, S và 1
\(\dfrac{x}{200}\)= \(\dfrac{1^2}{1.2}\) . \(\dfrac{2^2}{2.3}\) . \(\dfrac{3^2}{3.4}\) . .... .\(\dfrac{99^2}{99.100}\)
TÍNH GIÚP MÌNH
A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{99.100}\)
THANK YOU!!!❤
2. Chứng minh
a, \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{50^2}\) < 1
b, \(\dfrac{1}{3}\)< \(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{150}\)< \(\dfrac{1}{2}\)