Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Hoang Minh Vu

Chứng tỏ rằng mọi phân số có dạng sau đều là phân số tối giản:

a)n+1/n+2

b)2n+3/3n+5

Xyz OLM
14 tháng 3 2021 lúc 19:55

Gọi ƯCLN(n + 1 ; n + 2) = d\(\left(d\inℕ\right)\)

=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> n + 1 ; n + 2 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{n+2}\) là phân số tối giản

b) Gọi ƯCLN(2n + 3 ; 3n + 5) = d (d \(\inℕ\))

=> \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 2n + 3 ; 3n + 5 là 2 số nguyên tố cùng nhau

=> \(\frac{2n+3}{3n+5}\) là phân số tối giản

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
14 tháng 3 2021 lúc 19:53

a) Gọi ƯC( n + 1 ; n + 2 ) = d

=> n + 2 ⋮ d và n + 1⋮ d

=> n + 2 - ( n - 1 ) ⋮ d

=> 1 ⋮ d => d = 1

=> ƯCLN( n + 1 ; n + 2 ) = 1

hay n+1/n+2 tối giản ( đpcm )

b) Gọi ƯC( 2n + 3 ; 3n + 5 ) = d

=> 2n + 3 ⋮ d và 3n + 5 ⋮ d

=> 6n + 9 ⋮ d và 6n + 10 ⋮ d

=> 6n + 10 - ( 6n + 9 ) ⋮ d

=> 1 ⋮ d => d = 1

=> ƯCLN( 2n + 3 ; 3n + 5 ) = 1

hay 2n+3/3n+5 tối giản ( đpcm )

Khách vãng lai đã xóa

Các câu hỏi tương tự
nam phuong
Xem chi tiết
08.Nguyễn Ngọc Mai Duyên
Xem chi tiết
dao tien dat
Xem chi tiết
dao tien dat
Xem chi tiết
huy trần đình
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
HaiZzZ
Xem chi tiết
Lê Tuệ Đan
Xem chi tiết
nguyễn hồng nhung
Xem chi tiết