Ta có:a2(a+1)+2a(a+1)=(a+1)(a2+2a)=a(a+1)(a+2)
Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số ⋮2 ; 1 thừa số ⋮3
=>a(a+1)(a+2)⋮2.3=6 hay a2(a+1)+2a(a+1)⋮6
Ta có:a2(a+1)+2a(a+1)=(a+1)(a2+2a)=a(a+1)(a+2)
Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số ⋮2 ; 1 thừa số ⋮3
=>a(a+1)(a+2)⋮2.3=6 hay a2(a+1)+2a(a+1)⋮6
1. Rút gọn, tính giá trị biểu thức :
\(\left(a^3+3\right)\left(a^2-3a+9\right)-a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)\) tại \(a=2017^{2018}\)
2. Tìm x, biết :
a ) \(x\left(x+3\right)-x^2-11=0\)
b ) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
3. Chứng minh rằng
a ) \(\left(x+y\right)^2-\left(x+y\right)^2=-4xy\)
b ) \(\left(7n-2\right)^2-\left(2n-7\right)^2\) luôn luôn chia hết cho 9, với mọi n nguyên.
4.
a ) Chứng tỏ rằng \(x^2-4x+2017>0\) với mọi x
b ) Tìm giá trị nhỏ nhất của biểu thức :
\(Q=x^2-6x-11\)
Chứng minh: \(\left(a-1\right)\left(a-2\right)\left(1+a+a^2\right)\left(4+2a+a^2\right)=a^6-9a^3+8\)
CMR
a. a^2*(a+1) +2a *(a+1) chia hết cho 6 với a thuộc Z
b. a*(2a-3) -2a*(a-1) chia hết cho 5 với a thuộc Z
c. chứng minh rằng với mọi số tự nhiên lẻ n :
1.n^2+4n+8 chia hết cho 8
2. n^3 +3n^2 -n-3 chia hết cho 48
ai trả lời nhanh mình tick nha
1) Tìm x biết,
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
2) Rút gọn các biểu thức
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
c) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
d) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
e) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
3) Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến
a) \(9x^2-6x+2\)
b) \(x^2+x+1\)
c) \(2x^2+2x+1\)
4) Tìm GTNN của các biểu thức
a) A=\(x^2-3x+5\)
b) B=\(\left(2x-1\right)^2+\left(x+2\right)^2\)
GIÚP MK VỚI!!!!!!!!!!
1. Rút gọn các biểu thức sau:
a) \(\left(x+y\right)^2-\left(x-y\right)^2\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
c) \(9^8\times2^8-\left(18^4-1\right)\left(18^4+1\right)\)
Cho \(a^2+b^2+c^2=m\) .Tính giá trị của biểu thức sau theo m:
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
Chứng minh nếu \(x^2=b^2+c^2;y^2=c^2+a^2;z^2=a^2+b^2\)thì \(\left(x+y+z\right)\left(-x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Chứng minh các biểu thức sau
a) \(\left(a^2-1\right)^2+4a^2=\left(a^2+1\right)^2\)
b) \(\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)=4x^2\)
Rút gọn các biểu thức sau :
a) \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3-x^3-3x\left(x+1\right)\left(x-1\right)\)
c) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
d) \(100^2-99^2+98^2+97^2+......+2^2-1^2\)
e) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)+...+\left(2^{64}+1\right)+1\)
f) \(\left(a+b+c\right)^{^{ }2}+\left(a+b-c\right)^2-2\left(a+b\right)^2\)