S1=\(\dfrac{1}{1-2}+\dfrac{1}{2-3}+\dfrac{1}{3-4}+...+\dfrac{1}{99-100}\)
S1=1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
S1=\(\dfrac{99}{100}\)<1(đpcm)
S1=\(\dfrac{1}{1-2}+\dfrac{1}{2-3}+\dfrac{1}{3-4}+...+\dfrac{1}{99-100}\)
S1=1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
S1=\(\dfrac{99}{100}\)<1(đpcm)