Helppppppppppppppppppp
Cho a,b,c là các số thực dương thoả mãn a +b + c <1 . Chứng minh rằng \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+\left(a+b\right)}+\dfrac{1}{bc+\left(b+c\right)}+\dfrac{1}{ca+\left(c+a\right)}< \dfrac{87}{2}\)
Cho a, b, c là các số dương biết abc = 1. Chứng minh rằng: \(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}\ge\dfrac{1}{2}\)
Cho các số dương a,b,c cs abc=1 Chứng minh rằng
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
Bài này hơi khó
Ko bắt giải
Cho a,b,c là các số thực dương thoả mãn a +b + c <1 . Chứng minh rằng \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+\left(a+b\right)}+\dfrac{1}{bc+\left(b+c\right)}+\dfrac{1}{ca+\left(c+a\right)}< \dfrac{87}{2}\)
Help ạ
Cho a,b,c là các số thực không âm thỏa mãn a+b+c = 1011. Chứng minh rằng:
\(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) + \(\sqrt{2022b+\dfrac{\left(c-a\right)^2}{2}}\)+\(\sqrt{2022c+\dfrac{\left(a-b\right)^2}{2}}\) ≤ \(2022\sqrt{2}\)
Cho \(a,b,c\) là các số không âm thoả mãn \(a+b+c=2006\)
Chứng minh rằng :
\(\sqrt{2012a+\dfrac{\left(b-c\right)^2}{2}}\)\(+\)\(\sqrt{2012b+\dfrac{\left(c-a\right)^2}{2}}\)\(+\)\(\sqrt{2012c+\dfrac{\left(a-c\right)^2}{2}}\)≤\(2012\sqrt{2}\)
Cho a,b,c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng:\(\dfrac{a+b}{\sqrt{a}+\sqrt{b}}+\dfrac{b+c}{\sqrt{b}+\sqrt{c}}+\dfrac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\dfrac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\dfrac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)
Cho a, b, c đôi một khác nhau. chứng minh: \(\dfrac{a^2}{\left(b-c\right)^2}\)+\(\dfrac{b^2}{\left(c-a\right)^2}\)+\(\dfrac{c^2}{\left(a-b\right)^2}\)≥2
Cho \(a,b,c,x,y,z\) là các số dương. Chứng minh rằng: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)