cho P=\(\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+...+\dfrac{1}{201^2}+\dfrac{1}{203^2}\) chứng tỏ rằng p<\(\dfrac{1}{6}\)
Chứng minh rằng: \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dots+\dfrac{1}{20}< 1\)
Chứng minh: \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dots+\dfrac{1}{128}>3\)
\(\dfrac{1}{5+1}\)+\(\dfrac{2}{5^2+1}\)+\(\dfrac{3}{5^3+1}\)+....+\(\dfrac{202}{5^{202}+1}\) < \(\dfrac{1}{4}\)
Chứng minh giúp em ạ!!!
\(\dfrac{1}{5+1}\)
Chứng minh: \(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dots+\dfrac{1}{128}>2\)
Chứng minh: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dots+\dfrac{1}{15}< 3\)
Chứng minh rằng \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
chứng minh rằng : \(\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
a)chứng minh rằng :\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)........+\(\dfrac{1}{100^2}< \dfrac{1}{2}\)
b)tính nhanh tổng S với S= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+......+\dfrac{1}{61.63}\)
các cao nhân gải giúp với ạ !!! iem đang cần gấp