\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}\)+\(\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}\)+\(\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\) ≤ 1 cho a,b,c là 3 số dương. Chứng minh các BĐT sau
chứng minh các bất đẳng thức sau:
a)\(\left(\dfrac{a+b}{2}\right)^2>=ab\) với mọi a,b
b)\(a^2+b^2+c^2>ab+bc+ca\)
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn ab+bc+ca=3
Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\)
Cho các số thực dương a,b,c.
CMR: \(\dfrac{bc}{a^2+2bc}\) + \(\dfrac{ca}{b^2+2ca}\) + \(\dfrac{ab}{c^2+2ab}\) ≤ 1
-Nhờ mọi người làm giúp tui bài này với. Ngày mai tui nộp rồi.
Cho a,b,c là ba số thực dương. Chứng minh rằng:
\(\dfrac{3}{2}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\le\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\)
với a,b là các số thực dương cmr \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}>=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
Cho a,b,c là các số thực dương.CMR:
\(\dfrac{a^2}{a^2+b^2+c^2-bc}+\dfrac{b^2}{a^2+b^2+c^2-ca}+\dfrac{c^2}{a^2+b^2+c^2-ca}\le\dfrac{3}{2}\)