Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(\dfrac{a^2}{a^2+b^2+c^2-bc}=\dfrac{2a^2}{2a^2+b^2+c^2+\left(b-c\right)^2}\le\dfrac{2a^2}{2a^2+b^2+c^2}=\dfrac{2a^2}{a^2+b^2+a^2+c^2}\)
\(\le\dfrac{1}{2}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)\)
Tương tự:
\(\dfrac{b^2}{a^2+b^2+c^2-ac}\le\dfrac{1}{2}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}\right)\)
\(\dfrac{c^2}{a^2+b^2+c^2-ab}\le\dfrac{1}{2}\left(\dfrac{c^2}{a^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)\)
Cộng vế với vế:
\(P\le\dfrac{1}{2}\left(\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{b^2+c^2}{b^2+c^2}+\dfrac{c^2+a^2}{a^2+c^2}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)