Ta có: \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2.c+3\left(a+b\right).c^2+c^3-a^3-b^3-c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3.\left(a+b\right)^2.c+3\left(a+b\right).c^2-a^3-b^3\)
\(=3ab\left(a+b\right)+3\left(a+b\right)^2.c+3\left(a+b\right).c^2\)
\(=3\left(a+b\right)\left[\left(ab+ac\right)+\left(bc+c^2\right)\right]\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)=VP\)
P/s: Bài nhà cô Yến à m? :">