Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)
b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)
Bài 1: A= ( 5+1 ) ( 52+1)...(52004+1) - 54800
Tính A?
Bài 2: Nếu ( a+b+c )2 = 3 ( ab+bc+ca )
Cm: a=b=c
Bài 3: Cho a+b+c= 0. Chứng minh a3+b3+c3= 3abc.
GIÚP MÌNH NHA.. ^^ MÌNH CẦN GẤP LẮM ~~ CẢM ƠN MỌI NGƯỜI NHIỀU..
CMR
a, a3+b3=(a+b)3-3ab(a+b)
b,(a+b+c)3=a3+b3+c3+3(a-b)(b-c)(c-a)
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
1. a)Cho a-b+c-d=0. Chứng minh rằng: a3 - b3 + c3 - d3=3(c-d)(cd-ab)
b) cho a+d=b-c. Chứng minh rằng: a3 - b3 + c3 + d3=3(a-b)(ab+dc)
2. a)Cho \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\)=0. Tính S= \(\frac{yz}{x^2}-\frac{xy}{z^2}-\frac{zx}{y^2}\)
b) Cho \(\frac{1}{x}+\frac{2}{y}+\frac{3}{z}\)=0. Tính S= \(\frac{9xy}{2z^2}+\frac{yz}{6x^2}+\frac{4zx}{3y^2}\)
B1: Cho biểu thức A=\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)
Chứng minh rằng biểu thức A luôn luôn có giá trị dương với mọi giá trị của biến
B2: Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của các biến:
a,M= \(25x^2-20x+7\)
b, N= \(9x^2-6xy+2y^2+1\)
B3: Chứng minh rằng giá trị của các biểu thức sau luôn luôn âm với mọi giá trijcuar các biến
a, P=\(2x-x^2-2\)
b, Q=\(-x^2-y^2+8x+4y-21\)
Các bạn biết làm bài nào thì giúp mk nha
chứng minh rằng a=b=c nếu có 1 trong các điều kiện sau:
a,a^2+b^2+c^2=ab+bc+ca
b,(a+b+c)^2=3(a^2+b^2+c^2)
c,(a+b+c)^2=3(ab+ac+bc)
cho a + b + c = 0. chứng minh rằng \(a^3+b^3+c^3\)=3abc