\(VT=\left(a^2+b^2\right)^2-4a^2b^2\\ =a^4+2a^2b^2+b^4-4a^2b^2\\ =a^4-2a^2b^2+b^4=\left(a^2-b^2\right)^2\)
<=> \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+2ab+b^2\right)\left(a^2-2ab+b^2\right)\)
<=> \(\left(a^2+b^2\right)^2-4a^2b^2=\left(\left(a^2+b^2\right)+2ab\right)\left(\left(a^2+b^2\right)-2ab\right)\)
<=> vế trái = \(\left(a^2+b^2\right)^2-\left(2ab\right)^2\) (HĐT số 3)
<=> ĐPCM