Cho các số phức z, w thỏa mãn |z+2-2i|=|z-4i|, w=iz+1. Giá trị nhỏ nhất của |w| là
A. 2 2
B. 2
C. 3 2 2
D. 2 2
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 ; z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12 + 2 i
B. - 2 + 12 i
C. 6 - 4 i
D. 12 + 4 i
Trong số các số phức z thỏa mãn điều kiện |z-4+3i|=3, gọi z 0 là số phức có mô đun lớn nhất. Khi đó | z 0 | là:
A. 3
B. 4
C. 5
D. 8
Cho số phức z. Gọi A, B lần lượt là các điểm trong mặt phẳng (Oxy) biểu diễn các số phức z và 1 + i z . Tính |z| biết diện tích tam giác OAB bằng 8.
A. |z| = 4
B. | z | = 4 2
C. |z| = 2
D. | z | = 2 2
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;-1;1); B(2;1;-2), C(0;0;1) . Gọi H(x;y;z) là trực tâm của tam giác ABC thì giá trị của x+y+z là kết quả nào dưới đây?
A. 1
B. 1 3
C. 2
D. 3
Cho \(x,y,z\) là ba số thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(x+y+z\ne0\) .
Vậy giá trị biểu thức \(P=\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) là P=........
Cho số phức z = a+bi (a,b ∈ Z) thỏa mãn z+1+3i-|z|i = 0. Tính S = a +3b
A. S = 7/3
B. S = -5
C. S = 5
D. S = -7/3
Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A’B’C’D’ có A(1;2;-1);C(3;-4;1),B'(2;-1;3) và D'(0;3;5). Giả sử tọa độ D(x;y;z) thì giá trị của x+2y-3z là kết quả nào sau đây
A. 1
B. 0
C. 2
D. 3
Trong không gian hệ tọa độ Oxyz, cho mặt phẳng (P):2x+2y-z+3=0 và đường thẳng (d): x - 1 1 = y + 3 2 = z 2 . Gọi A là giao điểm của (d) và (P); gọi M là điểm thuộc (d) thỏa mãn điều kiện MA = 2. Tính khoảng cách từ M đến mặt phẳng (P)?
A. 4 9
B. 8 3
C. 8 9
D. 2 9