1; phân tích đa thức thành nhâ tử
(x+y+z)^3-(x+y)^3-(y+z)^3-(z+x)^3
2; cho x+y+z=0. CMR: 2*(x^5+y^5+z^5)=5*x*y*z*(x^2+y^2+z^2)
3;CMR a=y^4+(x+y)*(x+2*y)*(x+3*y)*(x+4*y).
AI LÀM ĐƯỢC MÌNH CHO 5 LIKE
Cho x+y+z=0.CMR: 5(x^3+y^3+z^3)(x^2+y^2+z^2)=6(x^5+y^5+z^5)
cho x,y,z.>0, x+y+z=2. cmr: (x+y)(y+z)(z+x)>=64 x^3 y^3 z^3
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
3)Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\)=1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\)=0 . CMR:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)=1
cho x + y+z=0. cmr 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
cho a+b+c=0;a^2+b^2+c^2=0;a^3+b^3+c^3=0. tính a+b^2+c^3
với x,y,z>0 cmr với x,y,z>0 cmr ( x^2 + 5 )( y^2 + 5 )( z^2 + 5 ) >= 6( x + y + z + 3)^2
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x