A(BT)=1/9((9/x+y+1) +(9/y+z+1)+9/(z+x+1)<=1/9(1/x+1/y+1+1/y+1/z+1+1/z+1/x+1)=1/9(2/x+2/y+2/z+3)
=1/9(2.(xy+yz+zx)/xyz)+3=2/9(xy+yz+zx)+1/3<=2/9.3+1/3=1(đpcm)
Another way :|
Đặt \(\hept{\begin{cases}a=\sqrt[3]{x}\\b=\sqrt[3]{y}\\c=\sqrt[3]{z}\end{cases}}\Rightarrow\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\)và \(xyz=1\Rightarrow\left(abc\right)^3=1\Rightarrow abc=1\)
Áp dụng BĐT AM-GM ta có:\(a^3+b^3+1=a^3+b^3+abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+abc\)
\(\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\). Tương tự cũng có:
\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)
Xảy ra khi \(a=b=c=1\Rightarrow x=y=z=1\)