Ôn tập cuối năm môn Đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Phương Linh

cho x,y,z là các số thực dương thỏa mãn: xy+yz+xz=2xyz. tìm giá trị nhỏ nhất của biểu thức:

\(P=\frac{1}{x\left(2x-1\right)^2}+\frac{1}{y\left(2y-1\right)^2}+\frac{1}{z\left(2z-1\right)^2}\)

Nguyễn Việt Lâm
30 tháng 6 2020 lúc 13:57

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)>0\Rightarrow a+b+c=2\)

\(\Rightarrow P=\frac{a^3}{\left(2-a\right)^2}+\frac{b^3}{\left(2-b\right)^2}+\frac{c^3}{\left(2-c\right)^2}\)

Ta có đánh giá: \(\frac{a^3}{\left(2-a\right)^2}\ge\frac{2a-1}{2}\) ; \(\forall a\in\left(0;2\right)\)

Thật vậy, BĐT tương đương:

\(2a^3\ge\left(2a-1\right)\left(a^2-4a+4\right)\)

\(\Leftrightarrow9a^2-12a+4\ge0\Leftrightarrow\left(3a-2\right)^2\ge0\) (luôn đúng)

Tương tự: \(\frac{b^3}{\left(2-b\right)^2}\ge\frac{2b-1}{2}\) ; \(\frac{c^3}{\left(2-c\right)^2}\ge\frac{2c-1}{2}\)

Cộng vế với vế: \(P\ge\frac{2\left(a+b+c\right)-3}{2}=\frac{1}{2}\)

\(P_{min}=\frac{1}{2}\) khi \(a=b=c=\frac{2}{3}\) hay \(x=y=z=\frac{3}{2}\)


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Kinder
Xem chi tiết
Nguyen
Xem chi tiết
trần trang
Xem chi tiết
Legolas
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết